

Vapor Intrusion Through Sewers: Investigation and Mitigation

Annie Lee Geosyntec Consultants Ltd. SMART Toronto

Toronto, ON | January 25, 2024 Ottawa | February 8, 2024

www.vertexenvironmental.ca

VAPOUR INTRUSION THROUGH SEWERS: INVESTIGATION AND MITIGATION

Annie Lee

SMART Remediation | 25 Jan 2024

GEOSYNTEC CONSULTANTS

OVERVIEW – VI CONCEPTUAL SITE MODEL

OVERVIEW – PREFERENTIAL PATHWAY OF SEWERS

Contaminant Migration into Sewer Systems:

- Waste discharge into drains and sewer laterals
- Vapour migration into utility corridors
- Groundwater intrusion of sewers below the water table

Source: Guidance for Documenting the Investigation of Human-made Preferential Pathway Including Utility Corridors, Wisconsin DNR, 2021. Publication RR-649

OVERVIEW – PREFERENTIAL PATHWAY OF SEWERS

Source: Guidance for Documenting the Investigation of Human-made Preferential Pathway Including Utility Corridors, Wisconsin DNR, 2021. Publication RR-649

GEOSYNTEC CONSULTANTS

Preferential Pathway for Vapour Intrusion:

- Sewer laterals and drains (p-traps not functioning)
- Migration through utility corridors to below slab

CASE STUDY

Sewer Gas Preferential Pathway Investigation and Mitigation

SITE DETAILS

- TCE in groundwater up to 248,000 µg/L
- Groundwater flow direction to southeast
- Existing sub-slab depressurization system
- Sanitary sewer mains to north, east, and west
 - Multiple service laterals from site building
- Surrounding property use
 - Industrial/commercial (north)
 - Residential (south, east, and west)

SANITARY SEWER DUE DILIGENCE

- Surveyed sewer manholes
 - Sanitary sewers located below the water table
- Reviewed sewer construction and flow directions
 - Eastern sewer vitrified clay pipe installed in 1911
 - Northern and western sewers are PVC pipes installed in 2019 and 2021
 - Reviewed sewer condition
 - Publicly available video inspection footage

ACTIVE SEWER VAPOR SAMPLING

Summa canister

- Short-term grab sample
- Access limitations due to traffic during sample deployment
- Potential temporal variability due to short duration sample
- Availability of canisters can restrict scheduling of sampling programs

PASSIVE SEWER VAPOR SAMPLING

Passive Sampler

- Reliable quantitative data and low reporting limits
- Smaller, easier to transport and deploy
- Longer deployment time (weeks) provides average vapor concentrations which may address concerns of temporal variability
- Requires a return visit
- Consider sampler applicability based on site constituents of concern

SANITARY MANHOLE RESULTS

- Manholes sampled from east and north sanitary mains
- Exceedances of sanitary sewer gas screening level (70 µg/m³)
- Data indicate sanitary mains acting as preferential pathway

RESIDENTIAL CLEANOUT RESULTS

- Sewer cleanouts sampled at residential buildings
- Exceedances of sanitary sewer gas screening level (70 µg/m³)
- Data indicate potential VI risk from sewer laterals
 - No exceedances of applicable screening levels (2.1 µg/m³) in indoor air samples collected concurrently

SEWER GAS PATHWAY MITIGATION MEASURES

Options for Remediation/Mitigation of Sewer Gas Pathway

- Removing contaminant source
- Lining or replacement of sewer pipes
- Sealing the plumbing system in the building
- Passive venting of manholes
- Active depressurization/venting of sewer system

Source: Nielsen and Hvidberg 2017

PILOT VENTING TEST

- Completed along east sanitary main
- Investigate TCE distribution and mass flux into sewer
- Support design of sewer venting system

PILOT VENTING TEST

Purge Volume (CF)	60	160	300	7000
TCE (µg/m ³)	185	194	361	189
cDCE (µg/m ³)	53.2	55.3	107	36.6
VC (µg/m ³)	1.5	1.8	3.1	1.7

SEWER VENTING SYSTEM

- Extraction points 1x manhole and 2x sewer cleanouts
- Ventilate east and north sanitary mains

SEWER VENTING SYSTEM

Manhole Extraction Point

GEOSYNTEC CONSULTANTS

SEWER VENTING SYSTEM

Sewer Cleanout Extraction Points

*Photos of NW location

SEWER VENTING SYSTEM PERFORMANCE

SEWER VENTING SYSTEM PERFORMANCE

- Reduced concentrations at
 - Sewer manholes
 - Residential sewer
 cleanouts
- Elevated concentrations remain beyond reach of venting system

NEXT STEPS

- Residential sampling along northern sewer
- Winter season sewer gas and indoor air sample collection from residential buildings
- Evaluate seasonality of groundwater levels and their impacts on sewer vapor concentrations

CONCLUSIONS

- Migration through sewers and other preferential pathways is an important consideration when developing a VI Conceptual Site Model
 - Investigation and mitigation methods differ from conventional VI through bulk subsurface materials
 - Disregarding this pathway could lead to improper characterization, and inadequate or unnecessary mitigation.
- Passive samplers can be used for sewer gas and indoor air sampling to address temporal variability
- Active sewer venting systems are readily implementable and can be effective in mitigating the sewer VI pathway

ACKNOWLEDGEMENTS:

Greg Johnson, Jeremiah Johnson, David Zolp, Nicholas Head, and David Bertrand

> Contact: alee@geosyntec.com

GEOSYNTEC CONSULTANTS