SIVIART Remediation

Unlocking Environmental Insights: Next Generation Sequencing Applications in Groundwater Remediation, Bioaugmentation, and eDNA Analysis

Ximena Druar SiREM SMART Ottawa

Toronto, ON | January 25, 2024 Ottawa | February 8, 2024

www.vertexenvironmental.ca

Unlocking Environmental Insights: Next Generation Sequencing Applications in Groundwater Remediation, Bioaugmentation, and eDNA Analysis

Ximena Druar(SiREM), Ron Gestler (Geosyntec Consultants), Melody Vachon (SiREM), Jennifer Wilkinson (SiREM), Courtney Toth (University of Toronto), and Phil Dennis (SiREM)

Presented by: Ximena Druar SMART Remediation Ottawa, ON 8-Feb-2024

SiREM's Products and Services

Remediation Testing treatability

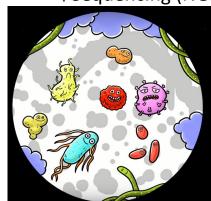
Passive Sampling

Bioaugmentation

KB·1 Dxo-88

Molecular Testing gene trac

Molecular Biological Testing


SIREM

DNA Extraction

qPCR

Next Generation
Sequencing (NGS)

Microbial Community Profiles

Certificate of Analysis: Gene-Trac[®] NitroGen™ Ammonia Monooxygenase A Assay

Custom

s SiREM Reference: S-8258

Report Date: 4-Oct-21 Data Files: QS3A-amoA-QPCR-0102

Table 1d: Test Results

Sample ID	Ammonia Monooxygenase A amoA (archaeal)		Ammonia Monooxygenase A amoA (bacterial)	
	Percent (2)	Gene Copies/Liter	Percent (2)	Gene Copies/Liter
MW-2-20210803	0.01 - 0.03 %	3 x 10 ⁵	NA	1 x 10 ⁴ U
MW-1-20210803	0.006 - 0.02 %	5 x 10 ⁴	NA	1 x 10 ⁴ U
INJ1-20210803	0.002 - 0.007 %	1 x 10 ⁵	NA	1 x 10 ⁴ U

Con final page for note

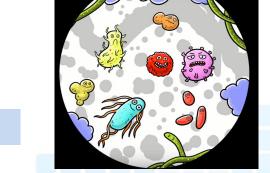
Quantify Specific Gene targets

A Few Ways to Look at Your Bugs

Quantitative PCR

Quantify specific pre-selected targets:

- o Microbial, e.g., Dhc, Dhb, Dhg
- Functional genes e.g., tceA, bvcA, vcrA


Next Generation Sequencing

Characterize the entire microbial community

Digital PCR

If Microbes Were Cars in a Lot...

Quantitative PCR Tests

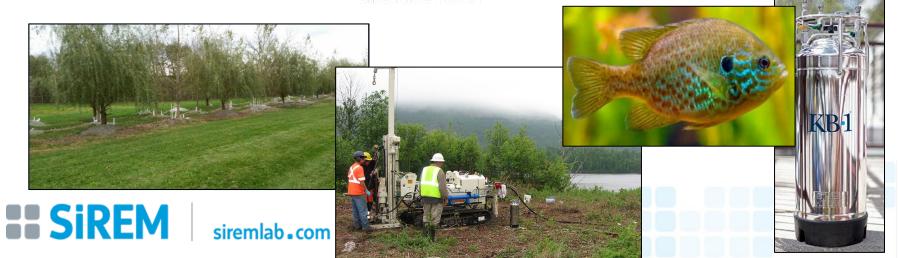
"There are 27 VWs"

Next Generation Sequencing (16S rRNA Amplicons)

"There are 27 VW, 14 Honda, 30 Toyota, 2 Ford, 6 Chevrolet..."

Metagenome Sequencing

SIREM

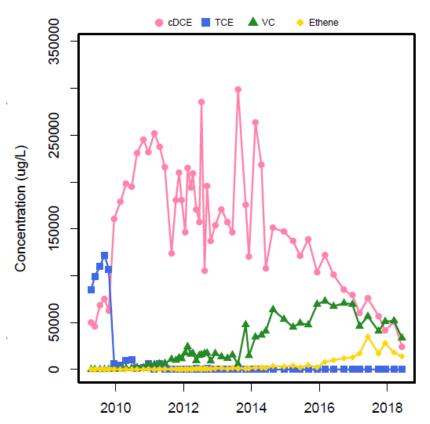

Learn every car make (microbe) and all the individual parts of the cars (genes)

Some uses of NGS

Characterization of:

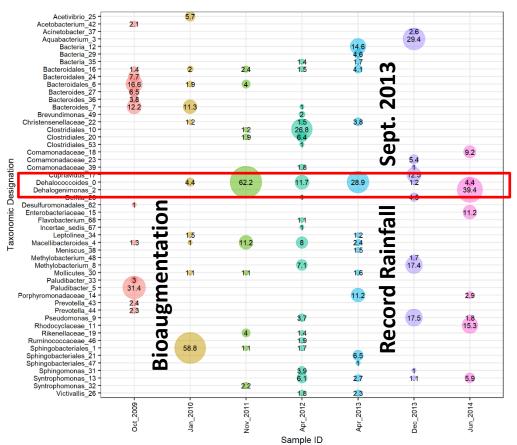
- Microbial communities in bioremediation
- Microbial cultures used in bioaugmentation
- Plant associated bacteria in phytoremediation

Water associated biota using eDNA



Using NGS Over Time in Remediation Projects

Oregon Site Dechlorination


- Bioaugmentation site KB-1 (Dhc)
- >99% TCE mass removal after one year
- Residual cDCE and VC are declining
- Long term Dhc monitoring and NGS study

Oregon Site NGS

- Dehalococcoides (Dhc) increases after bioaugmentation
- Dehalococcoides (Dhc) decline after April 2013 Why?
- September 2013 was the wettest on record in Oregon, 17 cm rain = surface water infiltration
- After 2014 Dehalogenimonas dominated

Percentage

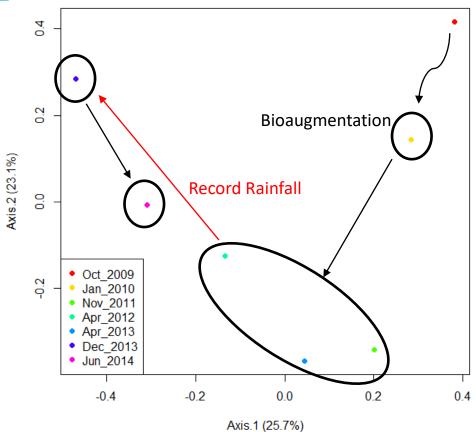
SampleID

Oct 2009

Jan 2010

Nov_2011

Apr_2012


Apr 2013

Dec_2013

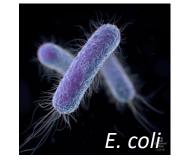
Jun 2014

Oregon Site NGS

Bioaugmentation Culture Characterization

Are pathogens present?

Pathogens are microorganisms that can cause disease


NGS can be used to detect the DNA signature of

pathogens in a sample

Microorganisms P
detected in a
sample

Potential pathogens in sample

Database of documented human, plant, and animal pathogens

Using NGS to Characterize Cultures

 NGS data is used to ensure our bioaugmentation cultures meet Canada's New Substances Notification (NSN) Regulations

KB-1, DGG-Plus in 2022, KB-1 Plus

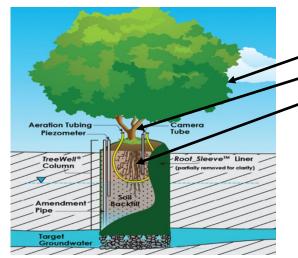
We confirmed that there was no significant evidence of

pathogens

Looking for Plant Associated Microbes

Using NGS with Phytoremediation

- In general, plant-associated microbes aid in plant growth, help acquire nutrients and moisture from soil, confer resistance to stresses, and some fix N₂
- Phytoremediation Sites
 - Petroleum Hydrocarbon/BTEX Site in Oklahoma
 - TCE/TCA Site in Pennsylvania
- **Study Goal** Characterize plant-associated microbes that may play a major role in contaminant degradation in phyto systems e.g., PHCs and TCE



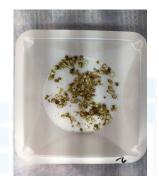
Tree Samples

Collect samples at three key locations:

Stems

Tree Cores

Roots



Are contaminant degraders present in tree tissue?

Common Endophyte Genera Detected:

• Burkholderia, Azoarcus, Rahnella, Pseudomonas, Pantoea, Enterobacter, Arthrobacter, Streptomyces, Bradyrhizobium

Other Specific Genera or Species Detected with Biodegradation potential:

- Dehalococcoides spp., known CVOC degraders
- Pseudonocardia spp., include 1,4-Dioxane degraders
- Polaromonas spp., aerobic degraders of Naphthalene & DCE
- *Phenylobacterium* include obligate herbicide degraders
- Methylibium spp., known MTBE degraders
- Variovorax paradoxus known benzene degrader
- Enterobacteracea spp. wide range of biodegradation activities
- Pseudomonas wide range of biodegradation activities

Detecting Flora and Fauna with Environmental DNA

What is eDNA?

Environmental DNA is expelled and accumulates when an organism interacts with an environment

Analysis is cheaper & easier to perform than physical bioassessment

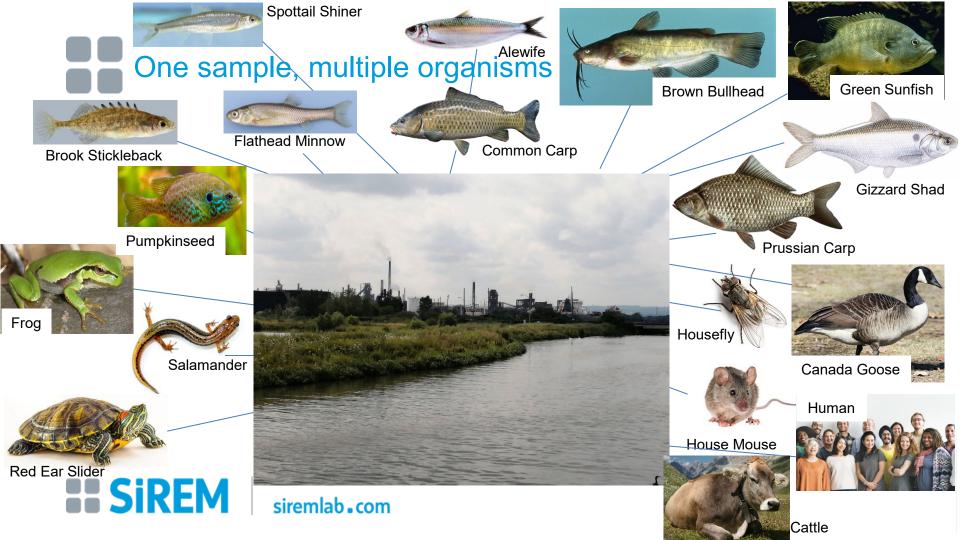
surveys

eDNA can be used to:

511(e)(11)(a)(b) o (co)(11)

- Determine ecological health of water bodies
- Assess changes to ecosystems over time
- Detect presence of endangered species
- Track invasive species

Sequencing Gene Targets


Gene-Trac NGS (Bacteria and Archaea 16S rRNA)

- Fish
- Macroinvertebrates
- Amphibians

eDNA Targets
12S rRNA (fish only)
Cytochrome C Oxidase I

DNA was extracted from water and sediment

Some of many applications of NGS:

- Track entire microbial communities during bioremediation
- Predict functions of microbial communities
- Determine whether pathogenic microorganisms are present
- Look for contaminant degrading bacteria in plants, soil, and groundwater
- Ecological surveys for organisms including fish, macroinvertebrates, and amphibians
- And many more uses are out there!

Ximena Druar B.Sc. Molecular Biologist SiREM xdruar@siremlab.com 519-515-0838

