

High value added to waste product: Hydrochar as a novel bio-augmenting amendment for bio- and phytoremediation applications

Victoria Collins NAIT Industry Solutions

SMART Remediation Edmonton, AB | March 11, 2020

www.vertexenvironmental.ca

High value added to waste product: Hydrochar as a novel bio-augmenting amendment for bio- and phytoremediation applications

Dr. Paolo Mussone Northern Alberta Institute of Technology

1

- in situ hydrocarbon remediation in cold calcareous subsoils often stalls due to difficulty in delivering nutrients, especially P
- Lab and landfarm trials suggested bone-based biochars could be effective amendments, but they are difficult to apply in situ to subsurfaces

Bonemeal

DOI: 10.1002/chem.200802097

Biochars

- Carbon-rich solids produced by pyrolysis at high temperatures
- Bone-based biochars can be effective P sources as amendments in bioremediation
- Biochars are difficult to apply (powdery, hydrophobic)
- Biochars of guaranteed quality are difficult to find

Hydrochars

- Hydrochars are carbon rich solids produced hydrothermally
- Hydrochars can be synthesized with desired P mineralogy and size with good process control and are more soluble for injections
- Can relate synthesis, structure, and sorption using rational design

3

Structure Property Relationships

- Modification of individual steps to produce the desired results
- Systematic change to material structure and observe change in properties
- In this case, we want to optimize for properties of hydrocarbons adsorption, flow, and hazard characteristics by changing the structure of hydrochars
- Modify the structure by changing synthesis conditions of the Hydrothermal Carbonization

Sample ID	Reaction Time (h)	Percentage of Porcine Meal Protein Isolate in Sludge (% m/m)	Percentage of Glucose in Sludge (% m/m)	Percentage of Starch in Sludge (% m/m)	Reaction Temperature (°C)	
H-1-10-150	1	10	0	0	150	
H-2-20-180	2	20	0	0	180	
H-4-30-210	4	30	0	0	210	
H-1-5-150 5% Glucose	1	5	5	0	150	
H-2-10-180 10% Glucose	2	10	10	0	180	
H-4-15-210 15% Glucose	4	15	15	0	210	
H-1-5-150 5% Starch	1	5	0	5	150	
H-2-10-180 10% Starch	2	10	0	10	180	
H-4-15-210 15% Starch	4	15	0	15	210	

P-O Stretching region

• Highly proteinaceous substances

• Changes in vibrations in both the carboxyl and amides bands of proteins

• Changes in number and position P bands

• Multivariate stats suggest temp and % protein an effect but not time.

- Mostly Organic P Very similar to Phytic acid XANES spectra, similarly to adsorbed PO₄ reference
- A minor CaHPO₄ mineral component is also present.
- Unidentified structure around 2158eV in higher temperature samples (H-4-30-210)

7000 Lower time in reactor Activated C correlated to increased Bone Biochar 6000 H_1_10_240_Q adsorption of Benzene H_4_10_180_Q X1_10_210_Q 5000 X1_20_210_Q X1_20_240_Q mg Benzene/kg sorbent Hydrochars generally X1_30_150_Q adsorb more benzene then 4000 X1_30_240_Q X1_30_240_15. traditional fish and bone X2_10_180_Q X2_20_180_Q 3000 meal biochars but less then X2_30_180_Q X4_10_150_Q activated carbon X4_30_150_Q 2000 X4_30_180_Q X4_30_210_Q • Best hydrochar candidate 1000 has least reaction time and lowest surface area

40

14

10

UNIVERSITY OF SASKATCHEWAN

20

mg/L Benzene

30

INDUSTRY I SOLUTIONS I

- Hydrochars have more adsorption capabilities then traditional biochars on a mass basis
- Isotherms for benzene on hydrochars are essentially linear until high benzene concentrations
- All hydrochars thus far are highly hydrophilic making them excellent candidates for bioremediation
- Hydrochars stimulate benzene degradation in model systems

NDUSTRY

- It is feasible to scale up hydrochars to produce a field scale amendment
- Hydrochars have good flow properties, high nutrient levels, and sorb benzene. This makes them ideal for microbial stimulation
- HTC synthesis allows for tailoring of hydrochar amendment

Second Study: Plant Mediated Tailings Dewatering Current inventory of oil sands tailings ~ 1.21Bm3

be able to grow in tailings

- Tailings pond bank stabilization
- Tailings dewatering

Negative growth conditions

- Saline conditions
- Limited nutrients
- Hydrocarbons

Ongoing and Future Work

- Assessing the plant growth promoting potential of hydrochar from various feedstocks on fluid tailings for dewatering and process water for naphthenic acid degradation
- Evaluating hydrochar for promoting the growth of agricultural species in saline soil and phytoremediation of salts
- Formulating hydrochar from lignin feedstock for benzene biodegradation

21

Industry Partners

Federated Co-operative Limited United Farmers of Alberta

NSERC, Alberta Innovates

NAIT

Arantxa Pino Persico Victoria Collins

University of Saskatchewan

Drs. Peak, Siciliano David Bulmer

