

Sterilants Program

Bonnie Drozdowski Innotech Alberta

SMART Remediation Edmonton, AB | March 11, 2020

www.vertexenvironmental.ca

InnoTech Alberta's Mandate

- Demonstrate Value to our Clients and Industries by contributing to research, technology development, and innovation for market sustainment, growth, and new disruptive offerings
- Demonstrate Return on Investment to the citizens of Alberta as an integral contributor to our stakeholder Alberta Innovates across the Path of Innovation
- Uniquely positioned to provide services where others lack our:
 - > Capability and Capacity expertise, facilities, scale
 - ➤ Risk Tolerance high risk industrial R&I initiatives
 - Neutrality impartial, independent, global recognition

3

What are Soil Sterilants?

- Non-selective, persistent, residual herbicides that render treated soil unfit for plant growth
 - Selective vs non-selective
 - Selective herbicides control specific types of vegetation
 - Non-selective herbicides used for total vegetation control
 - Residual vs Non-Residual can be selective or nonselective
 - Residual herbicides control vegetation long term
 - Non-residual herbicides generally only last one growing season
 - Persistent
 - Continued or prolonged existence of herbicide
 - Related to half life which depends on:
 - Application rate, soil moisture, pH, temperature, OM content, microbial content, etc.
 - Chemical and physical properties, composition, etc.

Sterilants - What is the Problem?

- Non-selective, persistent, and residual
- Typically applied at high application rates over several years
- Generally older sites farms, transmission lines, oil and gas distribution and industrial facilities, pipelines and electric metering stations, railways
- Often become contamination source through leaching, runoff or wind dispersion
- Best estimate >60,000 sites in Alberta

InnoTech ALBERTA
A SUBSIDIARY OF ALBERTA INNOVATES

5

5

Sterilants - What is the Problem?

- Remediation stalled due to challenging nature of contaminants and cost associated with conventional remediation approaches
 - Difficult to treat to guideline level
 - Widespread given length of migration time
 - No single, standardized solution due to differences in chemical structure and environmental behavior of products
 - Often confounding contaminant issues

Considerable effort over past 20 years, however knowledge gaps remain

Sterilants - Opportunity?

Increased emphasis on reducing liabilities

+

Ageing sites nearing their end of life

Opportunity to:

- Synthesize past learnings, and
- Partner to develop strategies and methods to effectively manage sterilant impacted sites

9

Synthesize Learnings

- Literature review and workshop summary provide an overview of:
 - physical and chemical properties,
 - persistence and fate in the environment,
 - ecotoxicological information,
 - regulatory guidelines,
 - applicable remediation technologies, and
 - operational challenges

associated with the 6 sterilants commonly screened for in Alberta

Sterilant-Affected Lands: Summary of Stakeholder Discussions. InnoTech Alberta, Edmonton, Alberta. 42 pp.

10

What did we learn?

- Majority of sterilant impacts in Alberta are associated with bromacil and tebuthiuron
- Sites are primarily located in central and southern Alberta
- Alberta Tier 1 Soil and Groundwater Remediation Guidelines (AEP 2016) are conservative and based on data generated outside Alberta
- Lack of available information for use in risk assessment models.
- Remediation technologies have been successfully utilized to reduce or eliminate sterilant impacts – more research required for Alberta conditions and at larger scale

		Lab 1 [±] Lab 2 [‡]				
Sterilant	Detection Limit (mg/kg) [±]	# Samples Analyzed in 2017	# of Exceedances in 2017	Detection Limit (mg/kg)	# Samples Analyzed in 2017	# of Exceedances in 2017
Bromacil	0.008	552	102	0.009	508	119
Tebuthiuron	0.005	400	38	0.001	508	9
Atrazine	0.005	400	2	0.009*	506*	17*
Simazine	0.02	400	0	0.01	508	1
Diuron	0.02	400	2	0.01	508	0

± HPLC/MS

GC/MS or HPLC
 *Atrazine + Desethyl-atrazine

1

11

Intended Outcomes

Program Area	Intended Outcome of the Program
Identification and Delineation	The uncertainty associated with the methods used to identify when/where sterilant impacts occur is reduced.
Risk Assessment and Management	 Reduction of risk associated with empirical data inputs to risk assessment models for protection of ecological pathways. Reduction of risk associated with sterilant re-activation after the use of immobilization technologies by demonstrating and quantifying their effectiveness with empirical data.
Remediation	 Optimal, state-of-the-art technologies and/or processes are demonstrated under Alberta conditions.
Knowledge Transfer	 Development and retention of a community of practice Annual workshops and technical information dissemination

Series of Projects

Program Component		Project # and Title	
	1.	Decision Support Tool	
Identification	2.	Sampling Best Management Practices	
and Delineation	3.	Laboratory Method Investigation	
	4.	Detection of Bioavailable Sterilants	
	5.	Field Screening Technologies	
	6.	Sterilant-Specific Model Input Data	
Risk Assessment	7.	Risk Assessment for Protection of Irrigation Water and Freshwater Aquatic Life	
and Management	8.	Investigating Sterilant Mobility in Alberta	
	9.	Native Species Toxicity Evaluation]
Remediation	10.	Investigation of Long-term Effects of Activated Carbon	
	11.	Alternative Technical Approaches for Sterilant Immobilization	
	12.	Remediation Demonstration(s)	рТесh Albe

Risk Assessment and Management Projects

Program Component	Project # and Title		Project Initiation	Project Service Provider	Principle Investigator/Team
	6./8.	Sterilant-Specific Model Input and Mobility in AB	October 2019	Advisian UNIVERSITY UNIVERSITY VERTITAS	Aaron Tangedal Adele Houston Barry Loescher Ryan Prosser
Risk Assessment and Management	7.	Risk Assessment for IW and FAL	October 2019	MILLENNIUM EMS Solutions Ltd.	Cory Kartz Ian Mitchell
	9.	Phytotoxicity Evaluation	October 2019	InnoTech ALBERTA A SUBSIDIARY OF ALBERTA INNOVATES	Sarah Thacker Bonnie Drozdowski

InnoTech Alberta
A SUBSIDIARY OF ALBERTA INNOVATES

17

18

Identification and Delineation Projects

Program Component	Project # and Title		Project Initiation	Project Service Provider	Principle Investigator/Team
Identification and Delineation 4.	1.	Decision Support Tool	March 2022	TBD	TBD
	2.	Sampling Best Practices	July 2020	TBD	TBD
	3.	Lab Methods	March 2020	EnnoTech ALBERTA A SUBSIDIARY OF ALBERTA INNOVATES	Alberto Pereira Julius Pretorius
	4.	Bioaccessibility vs Total Concentrations	April 1, 2020	UNIVERSITY OF ALBERTA	Jackie Maxwell, M.Sc. Candidate Sylvie Quideau
	5.	Field Screening Technologies	TBD (Soon)	VERTEX Environmental Inc. Specialized Contractors	Kevin French

Remediation Projects

Program Component	Project # and Title		Project Initiation	Project Service Provider	Principle Investigator/Team
	10.	Investigation of Long- term Effects of Activated Carbon	April 2020	UNIVERSITY OF ALBERTA A SUBSCIARY OF ALERTA INFOVERTS	Jackie Maxwell, M.Sc. Candidate Sylvie Quideau Sarah Thacker
Remediation	11.	Alternative Technical Approaches for Sterilant Immobilization	Q2 2020/21	TBD	TBD
	12.	Remediation Demonstration(s)	Q1 2021/22	TBD	TBD
19					InnoTech ALBERTA

19

Projects #6/8 Sterilant-Specific Model Input and Mobility in AB

Progress to Date:

- Sensitivity analysis of Tier 1 and 2 Models to focus laboratory experiments
- Literature review of metabolites/breakdown products
- · Experimental design under review

Laboratory Experiments using Alberta Soils:

- Estimate half-life
- · Identify metabolites
- Estimate K_{oc} (water-organic carbon partition coefficient)

Sterilant Fate and Mobility:

- Historical data from sterilant contaminated sites supplemented by additional data collection
- 51 contaminated sites with available data identified targeted sampling and soil collection at 3 sites in 2020

Project #7 Risk Assessment for IW and FAL

Four Tasks:

- 1. Tier 1 model evaluation on-going
- 2. Alternative model evaluation on-going
- 3. Risk Matrix development
- 4. IW and FAL guideline development

General findings to-date:

- More recent aquatic toxicity data has limited application to Alberta conditions
- Potential opportunities for adjusting "chemicalspecific" parameters used in guideline derivation based on available literature – ensure Alberta relevance

Photo Credit: Nichols Environmental

21

21

Project #9 – Phytotoxicity Evaluation

- Data from acute testing will be used to inform sterilant concentrations for definitive tests (Env. Canada Protocols)
- Measurements included shoot height for each living plant
 - Bromacil completed early March
 - Tebuthiuron will wrap up mid March
- Preliminary results
 - Germination not greatly impacted by concentrations
 - Toxicity † over time
 - Various concentrations that were not lethal after 3 weeks, were found to be lethal after 6 weeks

InnoTech ALBERTA
A SUBSIDIARY OF ALBERTA INNOVATES

22

